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The method of invariant imbedding is applied to solve the system of differential equations 
for the collisionless drift wave in a sheared magnetic field in the case of finite /Ii . Eigen- 
values and eigenfunctions are found. Invariant imbedding is found to be fast and accurate, 
overcoming the precision problems inherent in the ordinary shooting method. 

I. INTRODUCTION 

Recently, the authors have shown numerically that the collisionless drift wave is 
stable. The results of our calculations for the electrostatic case as well as a comparison 
with the analytic results of Catto and Tsang are presented in Tsang, Catto, Whitson 
and Smith [6]. 

It is the purpose of the present article to describe the numerical methods used to 
calculate the eigenvalues and eigenfunctions of the drift wave equations, especially 
in the case of finite /L$ . 

We point out that the reason previous papers have concluded erroneously that the 
drift wave passes from a stable to an unstable state as k,pi increases is the use of the 
term i(+12(xe/x) exp(-xe”/x2) to approximate (x,/x) Z(x,/x) where Z represents the 
plasma dispersion function (see Fried and Conte, [l]). In fact the behavior of these 
two functions is quite different near x = 0. 

To avoid the possibility of an error due to the incorrect approximation of some term, 
we use a rather involved set of equations to study the drift wave. 

Our starting point, Tsang [S], is the system of ordinary differential equations for 
the drift wave in a finite-p inhomogeneous plasma in a sheared magnetic field 
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The plasma density is assumed to vary in the x direction, E is the component of the 
perturbed electric field in a direction perpendicular to x, and B is the component’ of 
the perturbed magnetic field in a direction parallel to X. x is given in dimensionless 
u,nits (X = [/pi where 6 is the actual length and pi is the ion gyroradius) while the 
other quantities (also dimensionless) are given by the equations 

To = e-*1&), 

rl = e-*Ill,(b), 

for I,, and II the modified Bessel functions. 
We observe that once the real constants r]i , q, , pi , T (= T,/T,), b ( =kV2pi2), me/A& , 

and L,/L, are given, the co&cients of (1) are all determined as functions of x and 
the complex parameter w/w* . 

The basic eigenvalue problem is then to find a value of the complex parameter W/W* 
and complex solutions of(l), E, B, on the interval 0 < x < co which satisfy 

E'(0) = 0 (E even), (3) 
B(0) = 0 (B odd), (4) 
EdecaystoOasx+ co, (5) 
B decays to 0 as x + co. (6) 

It is clear that the coefficients of (1) depend on o/ w * in a nonlinear manner, and hence 
many of the standard numerical techniques for finding eigenvalues are not applicable. 
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A mode is stable if Im(w/w,) < 0, unstable if Im(o/o,) > 0, and marginally stable 
if Im(o/w,) = 0. 

If we multiply the second equation (1) by vd/x and add to the first equation (l), 
we obtain an equation for E” in terms of E and B. If we multiply the first equation (1) 
by -l/x and add to the second equation (l), we obtain an equation for B” in terms of 
E and B. The result is 

r3 = r:: :::I[3 (7) 

where 

a,, = (g + ‘Q + V dK/X’)/k 
a - VW + g)/xh, 12 - 

a21 = (K - g - K,)/xh, 

az2 = @ - vg/xV, 

h = 1 + vd/x. 

Thus, we have 

El” = A r3 

(8) 

(9) 
where 

A = A@, o/w * ; 7% 9 qi 3 A 9 r,b, m,lM 9 L/L). (10) 

In dealing with a single second order equation, the method of shooting backwards 
to the origin is quite adequate to obtain a solution. Thus the electrostatic case is 
amenable to such a procedure. On the other hand, if one wants to solve the full 
electromagnetic system (9), it is necessary to shoot backwards with two linearly 
independent vectors 

[ii] and [ $1. 
This procedure may be used to evaluate the determinant 

and set it equal to zero at the origin. (See Smith and Whitson [4]). 
Unfortunately, if we start with two linearly independent vectors (let us say that 

they are even orthogonal) they may become almost parallel as we shoot towards the 
origin. This problem becomes more pronounced, the greater the shooting length. 
Calculating the determinant with two almost proportional columns leads to the 
precision problems observed in [4]. The lack of precision manifests itself by causing 
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convergence failure in the root finder for increasing shooting length. There are several 
known methods for alleviating the above problem (see Guderley [7] and Davey [S]). 
They are: the method of orthonormahzation which realigns the shooting vectors so 
they become almost orthogonal at fixed intervals, the method of pakallel shooting 
which starts shooting from several different initial points, and the method of invariant 
imbedding which we have chosen to implement. To acquaint the reader with this 
method we briefly outline the procedure in the electrostatic case (pi = 0). 

II. THE ELECTROSTATIC CASE 

If fii = 0, then v = 0 and the system (7) reduces to 

E” = aE, where a = all, (11) 

together with the boundary conditions 

E’(0) = 0, E(c0) = 0. (12) 

We now define s = E’IE and r = E/E’ = l/s. This yields 

s’ = -s2 + a, 

r’ = -ar2 + 1 

with the boundary conditions 

s(0) = 0, Rer<O as x 

and the switching conditions 

1 1 r=- 
s’ s =-* 

r 

(13) 

(14) 

(15) 

(16) 

If one starts with the initial condition s = 0 at x = 0 and integrates in the direction 
of increasing x, switching to r when I s 1 > 1, it is found that, as x increases beyond 
some critical length, the solution always turns to Re r > 0 (E growing). This is 
caused by an inherent instability in the direction of increasing x for that solution of 
(14) which satisfies Re r ‘< 0. For this reason, we start our solution of (14) at some 
large value of x, say x = I, with the initial condition 

r=O at x=1 (17) 

or the initial condition 

r = l/(a112 - a’/4a) at x = I, (18) 
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the square root in (18) being chosen so that Re r < 0. This is of course the WKB 
approximation. The solution to (14) is then followed for decreasing x until 1 r I > 1 
when we switch to s and equation (13), which we continue to follow until x decreases 
to zero. In contrast to the previous method, this method of “shooting backwards” 
to the origin is highly stable. The complete procedure for finding an eigenvalue may 
now be described. First, a value of w/w* is chosen. With this value of w/o, , (13) and 
(14) are shot backwards to the origin. This yields a value of s at x = 0. We denote 
this value of s by f(w/&,). Thus, the process of solving the initial value problem may 
be considered as a means for evaluating the function f(w/w *). Conditions (15) require 
that we obtain a value of o/w* such thatf(w/w*) = 0. 

We found the complex secant method adequate for our purposes. That is, we 
selected an initial guess (w/w& , shot to the origin to find ~((w/w*),,), then selected 
a second guess (w/w& = (1 & t)(w/w &, for 1 a small number and shot in to find 
f((w/w&). Further guesses were then found successively by the formula 

In practice, rapid convergence (from 5-15 iterations) was obtained for six-place 
accuracy in w/o, if one started with a good guess. 

We observe that solutions to the eigenvalue problem using (17) and (18) as initial 
conditions agree for large enough starting lengths 1. Equation (18) permits the use 
of shorter lengths 1 without loss of accuracy. Nevertheless, we have found that the 
procedure should be checked occasionally with large shooting lengths I since the value 
of I needed for a given accuracy criterion varies with respect to the input parameters. 

To recover our eigenfunctions in the invariant imbedding procedure, we observe 
that in an interval where r is calculated we have 

E = rE’, 

E” = aE = arE’. 
(20) 

Thus, letting m = E’ we have 

m’ = arm, 

a first-order equation which may be initialized by 

m(l) = E. 

Because m grows as we shoot inward, it is advantageous to calculate q = l/m, 
which decays. We find 

q’ = -arq, (21) 
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From q we have 

E’ = ; and E=rE’=i. 

In the s-interval we have 
E’ = SE. 

Again we compute with 

k=+, 

so that 

From k we have 
k’ = --Sk. 

E=+, Ed, 

the initial value for k being obtained from the formula k 
In switching from s to r, we have 

k q=s* 
An extra shot may be used to normalize taking 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

III. THE FULL SYSTEM OF EQUATIONS 

The basic program of imbedding for systems is given in Scott [2, Chap. VIII]. 
Just as in a shooting code for two dependent variables, we need two linearly 

independent solutions 

El [ I Bl and G [ 1 4 
to (7). 

The solutions may be combined to give the matrix equation 

. (30) 

In analogy to the quantity r introduced for the single equation (ll), we introduce 
the matrix quantity R defined by 

(31) 
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This yields 

[; f]=K[Z fj]+IqZ 21, 

or from (30) 

Thus, if we assume [ 1 E; ‘; to be nonsingular, we obtain 
8’ B’ 

1 * 

R' = I- RAR, (32) 

which is a first-order system of equations in four complex unknowns rij , the com- 
ponents of the matrix R. To fit the boundary conditions (3) and (4) we must use a 
matrix S which is not the inverse of R. 

In fact, if we define E' = u and B’ = U, we may rewrite the system (7) in the form 

E' = u 
u' = allE + alzB 
B'=v 
v' = azlE + azzB, 

or 

It follows that 

We may then introduce the matrix S by the formula 

(33) 

(34) 
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where [z] and [:I are the same independent solutions given before. Thus 

Using (33), we find that 

Employing (34), we obtain 

(35) 

which is again a first-order system in the four unknowns sij of the matrix S. Relations 
may be obtained which relate the elements of R and S as follows: 

We have from (31) and (34) 

[Z] &[;I, i= 1,2, 

[fjj = R[;]. 

Thus 

E; = sllEi + s12B;, 

Bi = SW% + 4: , 

Ei = rllE; + r,,B: , 

Bi = r,,Ei + r,,Bi . 
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Solving the last two equations for E; and B, , we have 

I 
EC = - E. - !k B’ 

I 
rll 

z 
r11 

t7 

Bi = rzl (-$ Ei - 2 Bi) + r,,BI , 

Bi = 2 Ei + (rz2 - F) Bi . 

Hence, the connecting equations are 

1 
s 11=---Y 

--r12 

rll 
s12 = -9 

hl 

r21 
.721 = - 9 

r12r2, 

rll 
s22 = r22 - -, 

rll 

which may be solved backwards to yield 

1 
rll = - , 

-812 

Sll 
r12 = -9 

Sll 

S21 
r21 = - , 

s12s21 

$11 
r22 = s22 - - . 

$11 

(36) 

(37) 

The procedure we use is similar to that employed for the single equation. Since E 
andBvanishasx~co,wemaytakeE,=OandB,=Oatx=I,i=l,2.This 
yields the initial condition 

711 - 9 - 0 r12 = 0, r21 = 0, r22 = 0 at x = 1. (38) 

The condition (38) is analogous to the condition (17) for a single equation. A WKB 
condition similar to (18) for the single equation may be derived, but the form is much 
more involved than (18) since it requires the square root of a matrix. So far we have 
had adequate success with (38). We use (38) to start the backwards shot on R at some 
large length 1. The values of R are then followed until a value of x at which I rll j > 1, 
when the code switches and S is followed until a small value of X, x = Q , is reached. 
We cannot shoot all the way to x = 0 since the coefficients in equation (35) are singular 
at x = 0. This may be seen from (8). In practice we take E,, = lo+. As we have seen, 
the desired solution E, B must satisfy 

E = c,E, -I- c2E2, 

B =’ clBI + c2B2 . 

581/33/I-8 
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Thus, if we are to satisfy the conditions E' = 0, B = 0 at x = Q, we must have 

c,E; + c,E; = 0, 

c,B, + czBz = 0 

at x = Ed . This implies that at x = co 

if we are to have nontrivial solutions. The last condition requires that det S = 0 
at x = c,, since the other matrix on the right hand side of (34) is nonsingular. Hence, 
we may let f(o/o*) be set equal to the value of det S at x = E@ and proceed as in the 
case of the scalar r - s equations. That is, we use a root finder to determine a value of 
w/w* for which f(w/w *) = 0. 

IV. RECOVERY OF THE EIGENFUNCTIONS 

The solutions E and B may be recovered from the imbedding equations once we 
have determined an eigenvalue w/o, . This may be done as follows. First we find 
[:I and [z], linearly independent solutions of (7), then 

[E] = Cl [fJ + cz [ff]. 

From (31) we have 

and from (30) we have 

Therefore 

[; fj]‘=AR[Z 21. 

Thus, the matrix 

M=[Z f!] 

satisfies the first-order system 

M'=ARM. 

(39) 

(9 

(41) 

(42) 
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We may choose initial conditions so that 

E; [ 1 and J% B; [ 1 B;: 

are independent, e.g. 

mo = El 3 B;(l) = 0, E;(l) = 0, 

B;(l) = ~2, El , E.2 # 0. 

Hence, A4 satisfies the initial conditions 

M(l) = [ ‘0’ c”, ] 

Numerically, the solution M grows as we shoot from 1 inward so that we may with 
advantage solve instead for Q, the inverse of M. 

We have 
QM=I, 

Q’M+ QM’=O, 

Q’M + QARM = 0, 

and, since M is nonsingular, 

Q’ = -QAR. (49 

The sign in the equation for Q has been reversed, and we are thus solving for 
decaying modes. From (43) we have the initial condition 

Thus, we solve equation (44) for Q subject to (45). We then make use of 

M = Q-l, 

and finally defining 
w 

(47) 

we may calculate from (39) 

N=RM. (48) 

Therefore, in the regime where R is calculated we know the values of c] and @. 
In the regime where S is calculated, we have 

(49) 
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as well as 

It follows that 

2 r: 3 , 
;1 

Hence, if we define 

we have 

Again, defining PL = 1 

P'L + PL' = 0, 

We thus calculate P and then 

L = P-l. (53) 

Finally, if we define 

(54) 

we have 
K = Si. (55) 

Thus, in K and L we have all the quantities El, E2, B1 , B, , E; , Ei , B; , and Bi. 
The initial conditions for P may be determined from the values of these same quantities 
in the R regime as follows: 

(56) 

P = L-1. (57) 
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A switch back to R may be accomplished by 

(58) 

which yields initial conditions for Q = M-l. 
One shot inward is then used to evaluate E1(q,), E,(E,,), &(E&, &(q,), E;(E,,), and 

Ed. Now if [:I = cJ:l + c,[~l, 

E = ~$1 + c&z , 
B = c,B, -I- CA , 
E’ = c,E; + c,E; , and (59 

B’ = c,B; + csB; . 

Hence we may set E’(q,) and B(eo) = 0, which yields 

c&;(~o> + c&;(~o) = 0, 
(60) 

@duo> + czBz(~o) = 0. 

We have already arranged for an w/w* to make det S = 0 at x = co SO that 
det 2 2 [ 1 = 0. Thus, we need only select 

1 P 
Cl = --c&(eo), 

(61) 
c2 = cB,(e,) 

and, if we normalize to E(eo) = 1, we have 

so that 

1 = E(co> = CI&(~O> + c,E,(~o), 
1 = --cBz(~o) El(eo) + cBdd E&), 

1 
’ = &(eo> Me,) - Bdro) Ed~o) ’ 

- BZ(EO) 
Cl = Bdeo) Ed~o) - &(a,) Edeo) ’ 

Me01 
c2 = &CEO) E,(E,) - B2(~0) Edco) ’ 

or written in terms of K and L 

Cl = K,,(Eo) Ldeo) - K22(~0) LIP ’ 

Kd~o) 

” = &,(~o) L12(~0) - &&oi Ln(~o> : 

WI 
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If we write (59) in matrix form, we have 

or alternatively 

(63) 

Thus, after a first shot which determines c1 and c, , we may use (63) and (64) on a 
second shot to determine the fields E, B, E’, B' in the appropriate regime. 

V. NUMERICAL PROCEDURES 

We used the value w/o* - 1 as a guess for the principal mode in the case Q = 
Q = pi Ezz b = 0. The various parameters appearing in the equation were then turned 
on slowly, using the value of o/ w* for a given parameter value as a guess for o/o* 
at the new parameter value. 

To achieve a high level of accuracy, we used the routine DE of Shampine and 
Gordon [3] to compute solutions to the initial value problem. We remark that the 
odd modes (E = 0, B’ = 0 at x = 0) may be easily found with only slight coding 
changes by appropriately interchanging the roles of E and B in the code. 

We include some sample eigenmodes for the case of finite pi . 
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